Cardinality and Structure of Semilattices of Ordered Compactifications

نویسندگان

  • Douglas D. Mooney
  • Thomas A. Richmond
چکیده

Cardinalities and lattice structures which are attainable by semilattices of ordered compactifications of completely regular ordered spaces are examined. Visliseni and Flachsmeyer have shown that every infinite cardinal is attainable as the cardinality of a semilattice of compactifications of a Tychonoff space. Among the finite cardinals, however, only the Bell numbers are attainable as cardinalities of semilattices of compactifications. It is shown here that all cardinals, both finite and infinite, are attainable as the cardinalities of semilattices of ordered compactifications of completely regular ordered spaces. The last section examines lattice structures which are realizable as semilattices of ordered compactifications, such as chains and power sets. 1991 AMS SUBJECT CLASSIFICATIONS: 54D35, 54F05, 54D40, 06A12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordered semigroups characterized by their intuitionistic fuzzy bi-ideals

Fuzzy bi-ideals play an important role in the study of ordered semigroupstructures. The purpose of this paper is to initiate and study theintiuitionistic fuzzy bi-ideals in ordered semigroups and investigate thebasic theorem of intuitionistic fuzzy bi-ideals. To provide thecharacterizations of regular ordered semigroups in terms of intuitionisticfuzzy bi-ideals and to discuss the relationships ...

متن کامل

Posets of Ordered Compactifications

If (X ′, τ ′,≤′) is an ordered compactification of the partially ordered topological space (X, τ,≤) such that ≤′ is the smallest order that renders (X ′, τ ′,≤′) a T2-ordered compactification of X, then X ′ is called a Nachbin(or order-strict) compactification of (X, τ,≤). If (X ′, τ ′,≤∗) is a finite-point ordered compactification of (X, τ,≤), the Nachbin order ≤′ for (X ′, τ ′) is described i...

متن کامل

Avoidable structures, I: Finite ordered sets, semilattices and lattices

We find all finite unavoidable ordered sets, finite unavoidable semilattices and finite unavoidable lattices.

متن کامل

Definability in substructure orderings, I: finite semilattices

We investigate definability in the set of isomorphism types of finite semilattices ordered by embeddability; we prove, among other things, that every finite semilattice is a definable element in this ordered set. Then we apply these results to investigate definability in the closely related lattice of universal classes of semilattices; we prove that the lattice has no non-identical automorphism...

متن کامل

Bohr compactifications of discrete structures

The Bohr compactification and the Bohr topology are well known for groups, but they can easily be generalized to arbitrary structures. We prove a number of theorems about Bohr topologies in this general setting. Some of these results are new even for groups; for example, the weight of the Bohr compactification of a countable structure is either countable or continuum. In some cases, theorems ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004